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angles. Al though a somewhat  similar a r rangement  
occurs in p-aminophenol  (Brown, 1951) in which 
distances of 2.83, 3.13 and  3.18 A are found a t  con- 
s iderably more favourab le  angles t h a n  those shown by  
hydroxylamine ,  i t  seems best to us to leave one hy- 
drogen a tom of NI-I20I-I uninvolved in hydrogen  
bonding and  to assume such bonds only in the  2.74 
and 3"07 J~ distances.  

I t  is of interest  to ask wha t  is the  configuration of 
the molecule, and  where are the  hydrogen atoms.  
Considerable effort  was made  to see if our d a t a  were 
capable of yielding a n y  direct information,  with results 
described in detai l  elsewhere (Meyers, 1955). I n  sum- 
mary ,  a detailed examina t ion  of s t ructure  factors,  not  
given here, for three  different  possible a r rangements  
of hydrogen  bonds 

(a) 0 1 - H -  • • N2 -- 2.74 A, N 1 - H .  • • 0a = 3-07 A;  
(b) N ~ - H .  • • 02 = 2-74/~,  0 ~ - H -  • • N a = 3.07 A;  
(c) N 1 - H  • • • 02 = 2-74/~,  N 1 - H -  • • 0a = 3.07 A 

yielded, respectively,  values of R = 0.16, 0.16 and 
0.17 for all observed reflections, thus  supplying no 
direct evidence regard ing  the  hydrogen positions. 
Nevertheless,  all th ree  of these possible models lead 
to N H ~ 0 I t  molecules which, if isolated f rom the  
crystal ,  would have  ve ry  near ly  the  trans configuration 
of s y m m e t r y  C~. This resul t  lends some suppor t  to 
a model  of C, s y m m e t r y  in the  gas phase, assumed 
by  Gigubre & Liu, in so fa r  as extrapolat ions of from 
solid to gas are val id .*  

* While normally the same geometry occurs in the solid 
and gas, the binding forces in the solid are occasionally suf- 
ficient to produce some modifications of orientation about 

I t  is a pleasure to acknowledge suppor t  of this 
research by  the  Office of Nava l  Research and to t h a n k  
Dr  Pe te r  A. Howell  for assistance in obtaining the  
diffraction pa t te rns .  

R e f e r e n c e s  

ABI~AHA~IS, S.C., COLLII% R . L .  & LIPSCOMB, W. hi. 
(1951). Acta Cryst. 4, 15. 

ATOJI, M. & LIPSCOMB, W. 1~. (1953). Acta Cryst. 6, 770. 
BROW~, C . J .  (1951). Acta Cryst. 4, 100. 
COLT,IN, R. L. & LIPSCOMB, W. N. (1950). J. Chem. Phys. 

18, 566. 
COLLII% R . L .  & LIPSCO~B, W. hi. (1951). Acta Cryst. 

4, 10. 
CI~UICKS~rANK, D. W. J .  (1949). Acta Cryst. 2, 65. 
DE BI~UYN, L. (1892). Rec. Trav. chim. Pays-Bas, 11, 18. 
DONOHUE, J.  (1952). J. Phys. Chem. 56, 502. 
GIGI~RE, P. A. & LIU, I. D. (1952). Canad. J. Chem. 30, 

948. 
HUttD, C.D.  (1939). Inorganic Synthesis, vol. 1, p. 87. 

hiew York: McGraw-Hill. 
JERST,EV, B. (1948). Acta Cryst. 1, 21. 
MEYERS, E . A .  (1955). Ph.D. Thesis, University of Min- 

nesota. 
NIGHTINGALE, R . E .  & WAGI~EI~, E . L .  (1954). J. Chem. 

Phys. 22, 203. 
SC~rOMAKER, V. & STEVENSON, D . P .  (1941). J. Amer. 

Chem. Soc. 63, 37. 
TAUER, K . J .  & LI~eSCO~B, W. hi. (1952). Acta Cryst. 5, 

606. 
WASEI% J.  (1951). Rev. Sci. Instrum. 22, 567. 

single bonds. In hydrazine an eclipsed form was found. Pre- 
sumably the singly eclipsed form of hydrazine is only a small 
deviation from the geometry presumed to exist in the gas 
phase as indicated in the first drawing of Fig. 1 in the paper 
by Collin & Lipscomb (1950). 
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The expression for the diffuse intensity diffracted by the A1-Cu alloy with Guinier-Preston zones 
is derived as a trigonometrical series with coefficients dependent on the structure. I t  is shown 
that  the coefficients can be determined with the aid of the Fourier transform of the integrated 
diffuse intensity in relrod (00/). From these coefficients it is possible to deduce the features which 
are characteristic of the structure of Guini.er-Preston zones. 

1. I n t r o d u c t i o n  

The anomalous diffract ion effects in A1-Cu and 
A1-Cu-Mg alloys in the  age-hardened stage are well 
known (Preston, 1938; Guiltier, 1938). They  eorre- 

spend approx imate ly  to diffraction by  a two-dimen- 
sional lat t ice and  they  are usual ly  connected with the  
format ion  of two-dimensional  copper-rich regions in 
the  (001) planes of the  matr ix .  The asymmet r ica l  
intensi ty  dis t r ibut ion a round  the  reciprocal lat t ice 

40* 
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points can be explained by distortions in the crystal 
in the neighbourhood of Gninier-Preston (G.-P.) 
zones due to the difference in atomic sizes of Cu and 
A1 (Guinier, 1952). The data in the literature con- 
cerning the structure of G.-P. zones are based on 
calculations of scattered intensity on adequately chosen 
models and their comparison with the experimentally 
determined variation of intensity. 

In this paper it is shown that  the structure of G.-P. 
zones can be determined directly by interpretation of 
the Fourier transform of the diffuse intensity on the 
basis of a quite general model (Fig. 1). 

~o~ . . . .  

Z~m0 
~i z[mi 

Fig.  1. Model of G. -P .  zone used as a basis for the  
in te rp re ta t ion  of sca t te red  diffuse in tens i ty .  

We suppose a G.-P. zone to be formed by rect- 
angular atomic planes (001), characterized by Am~=~O 
and ~r 4 = 0. Here Am r is the difference between the 
copper-atom fraction in the rth plane of the G.-P. 
zone and that  in the matrix; s~ is the displacement of 
the rth plane of the G.-P. zone from its position in 
the matrix and this is measured in ½a as a unit of 
distance. The lattice of the G.-P. zone is face-centred 
cubic and the distribution of copper atoms within each 
atomic plane is assumed random. The phase relations 
between the individual G.-P. zones are neglected. 

2. Intensity calculation 

The amplitude of radiation diffracted by a G.-P. zone 
and by its neighbourhood is given by the expression 
(Guinier, 1952). 

A = Z(M)f~ exp (- -2~iB.x)  

--Z(z)fi exp (-2~iB.x)+2:(z)f~exp (-2~iB.y). (1) 

The first summation is taken over all atoms in the 
whole crystal including the G.-P. zone, the second 

• and the third over the G.-P. zone only. x and y are 
the position vectors of atoms at the lattice points of 
the undistorted crystal and in the crystal with dis- 
tortions respectively, f~ is the average atomic factor 
of atoms outside the G.-P. zone, f~ is the atomic 
factor of atoms within the G.-P. zone. 

Let us begin with the calculation of the last term 
of the right-hand side of equation (1): 

~(z)fB exp ( - 2 ~ i B . y )  
+ o o  

= ..~ qSr(h, k)M(r) exp [-rdl(r÷er)], (2) 
- - 0 0  

where h,/c, l are continuous variables and ~r(h, k) is 
the Fourier transform of the rth plane in the G.-P. 
zone. We define the function M(r) as follows" 

M(r) = exp (-2gih) ,  r -- 2n; 

M(r) = exp (-~ih) ,  r -- 2 n + l .  

Then we have 

¢~(h, k) = [ f~+( f cu - f~ )Am, ]  
1V1--1 , ~r2--1 

× ( l + e x p  [-~i(h+/c)]} .~ exp [-2rd(hu+kv)] , 
0 , 0  

where fcu and f ~  are the atomic factors of Cu and A1 
atoms respectively, and AT 1 and hr~ are the dimensions 
of the G.-P. zone in the [100] and [010] directions. 
For simplicity we will write ~ = (fcu-fxl)Am~; 
thus 

~r(h, k) = ( / ~ + ~ ) { l  +exp [ - ~ ( h + k ) ] }  
exp ( - 2 r d h N 1 ) - I  exp ( - 2 r d k N z ) - i  

× 

exp ( - 2 ~ i h ) - I  exp ( - 2 g i k ) - I  

-- (f~÷~,)v/(h, k) .  (3) 

By introducing expression (3) into equation (2) and 
considering e, ~ 1 we obtain 

.F(h, k, l) = rl(h, k) ~ rAM(r) exp (--~ilr) 

+~Y M(r)(~x~-~ilerf,-½~12 f ie~)exp(-~i lr)  (4) 

where /~ ;/~+o,~. 

The first term on the right-hand side of (4) obviously 
corresponds to diffraction by the undistorted lattice 
of the same size and orientation as the G.-P. zone and 
it has the same meaning as the second term in (1). 
By inserting (4) in (1) the second term of (1) and the 
first term of (4) cancel. The amplitude of radiation 
diffracted by the G.-P. zone and its neighbourhood is 
accordingly given by the first term on the right-hand 
side of (1), which corresponds to the sharp Bragg 
reflexion, and by the second term of (4), which appears 
due to the irregularities in G.-P. zones (Am r ~ 0 and 
er ~= 0). The latter term corresponds to diffuse scat- 
tering. 

The diffuse intensity diffracted by the G.-P. zone 
is given by 

[F~.(h,  k, l)l S -- lw(h, k)[ ~ {~Ul~ Z (f~e~Le~-f,~e2) 

× M(r)M* (s) exp [ -~ i l ( r - s ) ]  

- r d l  ~, (f~er~-f~e~a,)M(r)M*(s) exp [ - rd l ( r - s ) ]  
t*, 8 

+_~, ~o~M(r)M*(s) exp [ -rd l ( r - s ) ] )  . (5) 
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For simplicity we write 

A,,w~, = ( f : J : ~ - f ~ o q e ~ ) M ( r ) M * ( s ) ,  
B~,w~, = ( f i e ,  oc,- f : ,Ocr)M(r)M*(s) ,  
C~,w~, = a , a , M ( r ) M * ( s ) ,  

w~ = M(r)M*(s)  ~- exp ( - g i ~ , )  . 

On account of the relations 

A,~w,~ = A~,w* , 

B . w .  = - B , . w f  , 

C . w .  = C : * ,  

equation (5) becomes 

IFdiff.(h, k,/)[2 

= 1~ (h, k)]2(7~2/9 ~ Ars cos g[l(r-s)+q~,]  

- z d  2 B,s sin g[l(r-s)+(p~,] 

+ 2  Cr~ cos 7e[l(r-s)+cf, j}  , 

where 
sin 2 ghN~ sin 2 x~kN2 

[~(h, ]¢)[2 _ 2[1+cos g(h+k)]  

(6) 

sin ~ ~h sin 2 xek 

[F~.(h,  k, 1)[ 2 a s  a function of continuous variables 
h, k, 1 is not adequate for practical application. The 
integrated intensity of diffuse radiation in the relrod 
with 1 as variable is more adequate for further analysis 
of the structure of G.-P. zones. 

The function IF(h, k, l)~.[2 depends on h and k 
through the functions [~ (h, k)] 2 and ~ .  Having regard 
to the fact tha t  [~(h, k)] ~ is appreciable only for h 
and k both not far from integers, we introduce instead 
of h and k the quantities H +  ~1, K +  ~2, where H and 
K are integers both even or odd, and ~1 and ~2 are 
variables < 1. The function [~(h, k)[ ~ in this notation 
then becomes [~(~1, ~a)[% The functions ~r~ are 

even integer (r, s equal parity) 
~ = ( H + ~ )  × odd integer (r, s unequal parity). 

In  the integration of (6) with respect to ~ and ~ 
the cosine and sine terms can be supposed constant 
and equal to their mean value in the integration range 
because of t h e  rapid variation of the function 
I~(~1, ~)l ~- 

Two separate cases are possible: 

(a) H and K both even .~ In  this case ~r~ are always 
equal to even integers. Equat ion (6) may  then be 
written 

÷ c o  

I(l)di~. = 4N1N~ (z~l ~ 2 An cos gln 
--OO 

+ O ~  ÷OO 

- x d 2 B n  sin xdn+.~, Cn cos gln} , (7) 
--OO - -O0 

where n - - r - s  and the coefficients A,,  B~ and C, 
are given by 

÷ o o  

An 2 e 2 = (f,. ,'fr--ner--n--f,(Xr--ner), 
--00 

+00 

Bn = .~ (frer~Xr--n-- fr--ner--nCX,), 
--00 

+O0 

(b) H and K both odd .~For  r and s of equal par i ty  
q),., are even integers, for unequal par i ty  q0,~ are equal 
to odd integers. The detailed calculation leads to 

I(1)~f. -- 4N12g~.{~l~ 2~ (-1)nAn cos ~ln 

+ c o  -boo  

- ~ l . ~  ( -  1)nBn sin ~ l n + 2  ( -  1)nCn cos ~ln} , (8) 

where An, B n and Cn are defined as before. 

3. Fourier transform of integrated diffuse intensity 
in relrod (00l) 

The intensity diffracted by G.-P. zones was expressed 
in the preceding section as a trigonometrical series 
with coefficients An, Bn and Cn. These include Am~ 
and ~,, characteristic of the structure of the G.-P. 
zone. In  this section we will deal with the determina- 
tion of An, B n and Cn on the basis of analysis of the 
integrated diffuse intensity in relrod (00/) obtained 
experimentally. 

The cosine Fourier transform of I(00/)d~f. is ac- 
cordingly (7) given by 

T(x) -- I(00/)d~. exp (--ill 2) cos ~lxdl 
0 

= K ~ 12.~ An exp ( - i l l  ~) cos ~ln cos ~lxdl 
0 --OO 

f 
l .  + c o  

- ~  1 Z  Bn exp ( - i l l  ~) cos ~lx sin ~lndl 

~lo +oo } 
+ ~ 2 Cn exp ( - i l l  ~) cos gln cos ~lxdl , (9) 

where exp ( - i l l  2) has the meaning of the usual ar- 
tificial temperature factor and 10 is the upper limit of 
integrated intensity measured. K, here used as mean- 
ing the scale factor, should not be con/used with the 
integer K in the preceding section. 

The coefficients An, Bn and Cn can be divided into 
one par t  not depending on variable 1 and containing 
merely Am~ and e,, and a second part  containing func- 
tions of 1 alone. 

Following the definition in § 1, we have 

Owing to the small concentration of copper in solid 
solutions we can replace fA by fAl and A m  r by the 
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atomic fraction of copper. Using further the approxi- 
mation fcu = Zcuf(1), fx~ = Zx~f(/), where Zc~ and 
Z~ are equal to the number of electrons in the copper 
and aluminium atoms respectively, these approxima- 
tions lead to 

.f, = [Z~ ,+(Zc~-Z~, )m,] f (1 )  = Z J ( 1 ) ,  

~, = [Zc~-Zaa]m~f(1) --- (Z~-Zxa) f (1) .  (lO) 

By inserting (10) in the expressions for As, B.  and C. 
we obtain 

An = anf~(1), Bn = b.f~(1), Ca = c,.f~(l) , 

where an, bn and cn are independent of the variable 
1 and are as follows: 

-{-CO 

a,, = .,Y [ e , e , _ . Z , Z , _ n - - e ~ , Z , ( Z , _ . - -  Z~)], 

+co 
b.  = .,Y ( Z , - - Z ~ )  (Z,+, ,~+n--Z,_n~,_n) , 

- . . ¢ D  

cn = .a~ (Z,-Z~a)(Z,_,,-Z~a). (II) 

The function f(1) is so chosen that  Zcuf(l)  and Zxlf(1) 
represent the atomic factors at the temperature of 
measurement. 

Equation (9) takes the form 

( +co +¢¢ 

T(x )  = K lre2.,~, a n ~ v ( n - x ) -  g .~  b n z ( n - x  ) 

} + ~ c . 7 ( n - x  ) , (12) 
where -~  

v/ (n--x  ) = l~f~(l) exp  ( - i l l  ~') cos r d ( n - x ) d l  , 
o 

Z(n-x )  = lj~(1) exp ( - i l l  9) sin ~ l ( n - x ) d l ,  
o 

7 ( n - x )  = f~(l) exp  ( - i l l  ~) cos ~ l ( n - x ) d l  . 
0 

4. Interpretation of the Fourier transform 

The Fourier transform of the integrated diffuse scatter- 
ing according to (12) is represented as the sum of three 
functions % Z, 7 having non-zero values only in the 
immediate neighbourhood of x = n. We determine the 
coefficients an, bn and cn by the method of Flinn, 
Averbach & Rudman (1954). 

The function y , ( n - x )  has a non-zero first moment 
with respect to x = n and a zero area. Functions 
v / ( n - x )  and 7 ( n - x )  have a zero first moment and a 
non-zero area (Fig. 2). 

n--1 

(a) 

(b) 

| 
n + l  

n - I  n n + l  

(c) 

Fig. 2. Func t ions  (a) ~,  (b) Z, (c) 7 ca lcula ted  wi thou t  
artif icial  t e m p e r a t u r e  fac to r ;  10 = 5. 

in-i-O, 18, ( n - x ) T ( x ) d x  = - K r t b n  }y , ( } )d}  
,) n--~t ¢--61 

= -K~bnM(Ol) , 

n_oT(x)dx = .K[rl~an g_o~(})d}+cn I_,~(})d}~ 

= K [ ~ a n A  1 (~2) +cnA~ (59)], 

n-o .T(x)dx  = K[~t'an 5 _ , y ( ~ ) d ~ + c n l  _,~ (~) d~] 

= K[~anAl((~3)  +cnA~(03)] • 

(13) 

The limits of integration 8~, 8a are chosen with 
advantage at the first and the second zero point of the 
function y~. This enables the coefficients an and cn to 
be separated. 

The equations (13) allow us in principle to determine 
the coefficients an, bn, e, except for a scale factor K. 
Therefore we suppose the coefficients (Kan), (Kbn), 
(Kcn) to be known and we look for the possibility of 
determining m, and e,. We begin by analysing the 
coefficients cn according to (11). 
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These coefficients contain m, only. According to the 
literature dealing with the structure of the G.-P. 
zones (Jagodzinski & Laves, 1949; Guinier, 1952; 
Gerold, 1954) we suppose m~ to be appreciable only 
in one or two neighbouring planes of the G.-P. zone. 
We distinguish, therefore, further the G.-P. zones odd 
and even (Fig. 3). In the case of the odd G.-P. zones 

(a) (b) 

Fig. 3. (a~ Odd G.-P. zone. (b) Even G.-P. zone. 

we suppose that  only m 0 is appreciable and that  mr 
decreases rapidly as r goes away from zero. In the 
case of even G.-P. zones m 0 and mx are appreciable 
and m~ decreases rapidly in both directions. In the 
following we carry out the analysis for the odd G.-P 
zones only, this being more probable owing to the 
strong interaction of copper and aluminium atoms, as 
stated by Jagodzinski & Laves (1949). That this 
assumption is true is shown in the Appendix on the 
basis of experimental data. 

If the odd G.-P. zone is symmetrical, it holds 
m~ = m;. If asymmetrical we may introduce ~h~ by 
definition 

~ = ~(m,+u~). 

By assuming the rapid decrease of mr from a 
maximum as r goes away from zero the coefficient c~ 
is given approximately for both symmetrical and 
asymmetrical zones by 

+ c ¢  

cn = ( Z c = - Z x ~ ) ~ , ~ , _ ~ .  (14) 
~ 0 0  

The accuracy of (14) exceeds that  of experimentally 
determined c,. I t  is therefore not possible to deter- 
mine from the analysis of coefficients cn the separate 
values of coefficients mr and m;; we can obtain their 
average values ~ ,  only. For the same reason only the 
determination of ~r, the average of [~,[ and [e;[, is 
possible. 

In the first approximation the formula (11) gives 

(Kco) = K(gcu-Zxl)2~o 2 , | 

(Kc~) = 2 (KC°)½(Zcu-ZAO~] /K '  i (15) 
(Kc~) = 2 (KCo) ~ ( z c u - Z x O ~ l / K .  

The coefficients (Kcn) are used owing to the im- 
possibility of determining the coefficients cn on the 
absolute scale. For this reason also ~h, cannot be ex- 
pressed on the absolute scale. If more precise ~,] /K 
is required we make use of the second approximation 

- -  t t  2 - -  t 2 (Kco) = (Zcu-Z~)2(Kmo + 2 K m l  ) ,  
2 _ t t  _ i t  (Kcl) = 2(Zcu-Z~) ml VK(mo VK+~h~VK),  

(Zcu-Z~) (2m0 m2 K + m l  K)  . ( K c 2 )  = 2 . . . . . . . . .  2 

The ~ and ~h~' correspond to the first and to the 
second approximation respectively. 

The sn can be determined from the coefficients b.. 
The first approximation of (11) gives 

(gbn) = 2 ~ n V K . Z ~ ( Z c u - Z A O ~ o ~ K ;  (16) 

in the second approximation 

(Kbn) = 2(Zc,~-Z~).Zx~[~'n']/K.~oI/K 
+ ~h~l/K. (~+~ + ~_~)I/K] • 

The ~'~ and ~ '  correspond to the values of ~ in the 
first and in the second approximation. The scale factor 
cannot be directly determined from the experimental 
data. 

I t  is a pleasure to thank Dr K. Dornberger from 
Deutsche Akademie der Wissenschaften zu Berhn, for 
valuable discussion in the initial stage of this work. 
I am indebted to the Research Institute of Metals for 
permission to publish this paper. 

A P P E N D I X  

For an even zone we have 

- t - oo  

(-1)ncn = 0 .  (17) 

The diffuse intensity in relpoint (110) according to (8) 
and (17) is 

I(110)diff. = Z(--  1)nC, = 0 

which is in disagreement with experiment. 
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